首页> 外文OA文献 >Complex scale-free networks with tunable power-law exponent and clustering
【2h】

Complex scale-free networks with tunable power-law exponent and clustering

机译:具有可调幂律指数和无穷大的复杂无标度网络   集群

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a network evolution process motivated by the network ofcitations in the scientific literature. In each iteration of the process a nodeis born and directed links are created from the new node to a set of targetnodes already in the network. This set includes $m$ "ambassador" nodes and $l$of each ambassador's descendants where $m$ and $l$ are random variablesselected from any choice of distributions $p_{l}$ and $q_{m}$. The processmimics the tendency of authors to cite varying numbers of papers included inthe bibliographies of the other papers they cite. We show that the degreedistributions of the networks generated after a large number of iterations arescale-free and derive an expression for the power-law exponent. In a particularcase of the model where the number of ambassadors is always the constant $m$and the number of selected descendants from each ambassador is the constant$l$, the power-law exponent is $(2l+1)/l$. For this example we deriveexpressions for the degree distribution and clustering coefficient in terms of$l$ and $m$. We conclude that the proposed model can be tuned to have the samepower law exponent and clustering coefficient of a broad range of thescale-free distributions that have been studied empirically.
机译:在科学文献中,我们介绍了由网络引用驱动的网络演化过程。在该过程的每次迭代中,将承载一个节点,并创建从新节点到网络中已经存在的一组目标节点的定向链接。该集合包括$ m $个“大使”节点和$ l $个大使的后代,其中$ m $和$ l $是从分布$ p_ {l} $和$ q_ {m} $的任意选择中选择的随机变量。这个过程模仿了作者引用他们引用的其他论文的参考书目中包含的不同数量论文的趋势。我们表明,经过大量迭代后生成的网络的度分布是无标度的,并导出了幂律指数的表达式。在模型的特定情况下,使者的数量始终为常数$ m $,从每个使者中选择的后代的数量为常数$ l $,幂律指数为$(2l + 1)/ l $。在本例中,我们以$ l $和$ m $为单位导出度分布和聚类系数的表达式。我们得出的结论是,可以对提出的模型进行调整,使其具有与实证研究的大范围无标度分布相同的幂律指数和聚类系数。

著录项

  • 作者

    Colman, ER; Rodgers, GJ;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号