We introduce a network evolution process motivated by the network ofcitations in the scientific literature. In each iteration of the process a nodeis born and directed links are created from the new node to a set of targetnodes already in the network. This set includes $m$ "ambassador" nodes and $l$of each ambassador's descendants where $m$ and $l$ are random variablesselected from any choice of distributions $p_{l}$ and $q_{m}$. The processmimics the tendency of authors to cite varying numbers of papers included inthe bibliographies of the other papers they cite. We show that the degreedistributions of the networks generated after a large number of iterations arescale-free and derive an expression for the power-law exponent. In a particularcase of the model where the number of ambassadors is always the constant $m$and the number of selected descendants from each ambassador is the constant$l$, the power-law exponent is $(2l+1)/l$. For this example we deriveexpressions for the degree distribution and clustering coefficient in terms of$l$ and $m$. We conclude that the proposed model can be tuned to have the samepower law exponent and clustering coefficient of a broad range of thescale-free distributions that have been studied empirically.
展开▼
机译:在科学文献中,我们介绍了由网络引用驱动的网络演化过程。在该过程的每次迭代中,将承载一个节点,并创建从新节点到网络中已经存在的一组目标节点的定向链接。该集合包括$ m $个“大使”节点和$ l $个大使的后代,其中$ m $和$ l $是从分布$ p_ {l} $和$ q_ {m} $的任意选择中选择的随机变量。这个过程模仿了作者引用他们引用的其他论文的参考书目中包含的不同数量论文的趋势。我们表明,经过大量迭代后生成的网络的度分布是无标度的,并导出了幂律指数的表达式。在模型的特定情况下,使者的数量始终为常数$ m $,从每个使者中选择的后代的数量为常数$ l $,幂律指数为$(2l + 1)/ l $。在本例中,我们以$ l $和$ m $为单位导出度分布和聚类系数的表达式。我们得出的结论是,可以对提出的模型进行调整,使其具有与实证研究的大范围无标度分布相同的幂律指数和聚类系数。
展开▼